Bounds of Multiplicative Character Sums with Fermat Quotients of Primes
نویسنده
چکیده
Given a prime p, the Fermat quotient qp(u) of u with gcd(u, p)= 1 is defined by the conditions qp(u)≡ u p−1 − 1 p mod p, 0≤ qp(u)≤ p − 1. We derive a new bound on multiplicative character sums with Fermat quotients qp(`) at prime arguments `. 2010 Mathematics subject classification: primary 11A07; secondary 11L40, 11N25.
منابع مشابه
Short Character Sums with Fermat Quotients
The distribution of Fermat quotients and related sequences is interesting from several perspectives. First, there are several applications, in particular to algebraic number theory and computer science. Fermat quotients play for instance a role in primality testing (see [L]) and are well-studied as model for generating pseudo-random numbers. (See [COW].) From the analytical side, establishing d...
متن کاملQuotients of Fermat curves and a Hecke character
We explicitly identify infinitely many curves which are quotients of Fermat curves. We show that some of these have simple Jacobians with complex multiplication by a non-cyclotomic field. For a particular case we determine the local zeta functions with two independent methods. The first uses Jacobi sums and the second applies the general theory of complex multiplication, we verify that both met...
متن کاملNon-vanishing of Carlitz-fermat Quotients modulo Primes
Contents 1. Introduction 1 2. Carlitz-Fermat quotients 2 3. Non-vanishing of Carlitz-Fermat quotients modulo primes 4 1. Introduction. Let q = p s , where p is a prime and s is a positive integer. Let F q be the finite field of q elements, and set A = F q [T ] and k = F q (T). Let τ be the mapping defined by τ (x) = x q , and let kτ denote the twisted polynomial ring. Let C : A → kτ (a → C a) b...
متن کاملMultiplicative Character Sums with the Sum of g-ary Digits Function
We establish upper bounds for multiplicative character sums with the function σg(n) which computes the sum of the digits of n in a fixed base g ≥ 2. Our results may be viewed as analogues of some previously known results for exponential sums with sum of g-ary digits function. MSC Numbers: 11L40, 11A63.
متن کاملUniform Distribution of Fractional Parts Related to Pseudoprimes
We estimate exponential sums with the Fermat-like quotients fg(n) = gn−1 − 1 n and hg(n) = gn−1 − 1 P (n) , where g and n are positive integers, n is composite, and P (n) is the largest prime factor of n. Clearly, both fg(n) and hg(n) are integers if n is a Fermat pseudoprime to base g, and this is true for all g coprime to n when for any Carmichael number n. On the other hand, our bounds imply...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011